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Abstract

In this summer project, we perform an analysis of the intermediate layer
neurons primarily through the use of CLIP-dissect, a powerful model to
describe neurons, and its Soft-WPMI similarity function. Specifically, we first
validate the relative accuracy of CLIP-dissect when analyzing intermediate
layer neurons using ground-truth labeling, before using the large pretrained
model and the Soft-WPMI similarities to perform analysis of convolutional
neural networks (CNNs) such as ResNet-50. We then create an interactive
GUI with the visualizations of model, layer, and neuron-level analysis to
allow anyone to access the intermediate neurons of these CNNs using output
from CLIP-dissect and images from Broden. We allow users to directly
search for specific concepts within any network so that they can better
understand the inner workings of the models that increasingly define our
daily life. Our website with an interactive version of this project can be
found at https://dr4nx.github.io/clip-search/index.html.

1 Introduction

In this project, we evaluate, describe, and visualize intermediate layers of deep neural
networks such as ResNet-50 (He et al., 2015) using CLIP-dissect (Oikarinen & Weng, 2022).
It aims to provide an improved understanding of the inner workings of the ResNet-50 model
by allowing users to observe its behavior and investigate how it makes choices. ResNet-50
is a powerful deep convolutional neural network that was trained on large-scale datasets
to perform image classification. It is well known for its innovative use of skip connections.
We primarily utilize CLIP-Dissect for Neuron Visualization in our analysis, using it to
understand the neurons within the ResNet-50 model to observe what images they respond
to. This helps us in determining whether patterns or concepts are significant to individual
neurons, and if so, which ones.

Our primary goal for this project was first, to verify the accuracy of CLIP-dissect’s results,
and second, to use the mentioned results to create visualizations of ResNet-50 to understand
the complexity and concepts used in each of the different layers. In this report, we will
explain our methods of doing so show the accuracy of CLIP-dissect, and then use its results
to determine neuron interpretability and level of complexity.
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2 Background and Definitions

2.1 Background

CLIP: CLIP stands for Contrastive Language-Image Pre-training is an efficient method of
learning visual representations from natural language supervision. CLIP is built to learn from
the practically unrestricted amount of image and text pairs by training an image encoder EI

and text encoder ET simultaneously, then given a batch of N image xi and text ti training
example pairs denoted as (xi, ti)i∈[N ] with [N ] defined as the set 1, 2, · · · , N , CLIP aims

to increase the similarity of the (xi, ti) pair. It does this by encoding the xi and ti with
EI and ET to create Ii and Ti, then maximizes cosine similarity of the (Ii, Ti) in the batch
of N pairs while minimizing the cosine similarity of (Ii, Tj), j ̸= i Once the image encoder
EI and the text encoder ET are trained, CLIP can perform zero-shot classification for any
set of labels: given a test image a1, we can feed in the natural language names for a set
of M labels. The predicted label of a1 is the label tk that has the largest cosine similarity
among the embedding pairs (I1, Tk). CLIP plays a key part in both CLIP-dissect and our
own analysis in CLIP-avg (described in section 4.3).

CLIP-dissect: CLIP-dissect is a technique used to automatically describe the function of
individual hidden neurons inside of vision networks. It is extremely flexible, adapting to
any number of concepts and images. It works in three steps. First, it uses image and text
encoders EI and ET from a CLIP model to find the text embedding Ti of the concepts ti in
the concept set S and image embedding Ii of the images xi in the probing dataset Dprobe. It
then computes concept-activation matrix P ∈ RN×M where element (i, j) is Ii · Tj . After
computing this concept matrix, CLIP-dissect then calculates the activation map Ak(xi) for
target neuron k for every image xi in Dprobe, then defines a summary function g to create an
activation vector qk for neuron k where qk = [g(Ak(x1)), g(Ak(x2)), · · · , g(Ak(xN ))]⊤ ∈ RN .
Then, using a similarity function sim, with Soft-WPMI similarity as defined in section 2.2.1
used at all points in our paper, defined by sim(tm, qk;P ) where the label of neuron k is
the label that gives the highest similarity or, l where l = argmaxm sim(tm, qk;P ). For this
paper, we will reference all CLIP-dissect similarities using sim(tm, qk;P ).

SAM: SAM is an image segmentation model that can generate segmentation masks for a
wide range of input prompts and has zero-shot transfer abilities across a wide range of tasks
and datasets. It was trained on 11 million photos and over 1 billion masks. It has three main
modules: an image encoder, a prompt encoder, and a mask decoder. The image encoder
generates a single image embedding, whilst separate prompt encoding modules are specially
intended for the effective encoding of various prompt types. A lightweight decoder may then
build segmentation masks with amazing speed and quality by combining image embedding
with quick encodings.

Grounding DINO: The goal of the Grounding DINO model is to provide a robust framework
for unspecific object recognition using natural language inputs, often known as open-set
object detection. The DINO model is based on a single-decoder-dual-encoder architecture.
It consists of an image backbone that extracts image features, a text backbone that extracts
text features, a feature enhancer that combines image and text features, a language-guided
module for query selection, and a cross-modality decoder that refines boxes.

Broden: The Broden dataset is a compilation of many heavily labeled image data sets,
including ADE, Open-Surfaces, Pascal-Context, Pascal-Part, and the Describable Textures
Dataset. Each image in the collection comprises a visual idea that is labeled using a pixel-
by-pixel binary segmentation map. It includes 63,305 images and 1197 visual concepts.
Concepts are classified into six categories: textures, colors, materials, parts, objects, and
scenes.

2.2 Definitions

In our report, we mention two different types of similarity functions; Cosine similarity as
defined by CLIP, and Soft-WPMI similarity as defined in CLIP-dissect. We will briefly
explain the definitions and our usage here.
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2.2.1 Soft-WPMI Similarity (CLIP-dissect)

Soft-WPMI similarity is the default similarity function used by CLIP-dissect. Soft-WPMI is
a more flexible version of WPMI (Weighted Pointwise Mutual Information) (Wang et al.,
2020). The equation for this similarity is defined as:

sim(tm, qk;P ) ≜ soft wpmi(tm, qk) = logE[p(tm|Bk)]− λlogp(tm)

where p(tm|Bk) represents the probability that every image in the image set Bk has the
specific concept tm, and p(tm) represents the probability that a fully random set of images
B will be described by the same concept. To elaborate, E[p(tm|Bk)] =

∏
x∈Dprobe

[1 + p(x ∈
Bk)(p(tm|x)− 1). This effectively checks every image in Dprobe to see if it is a part of the
specified image set (which in CLIP-dissect is the top-100 activating images), and if so it
checks the probability that the image matches the particular concept based on the concept
matrix. λ is a hyperparameter. More details about this similarity function and how it is
directly applied can be found in the CLIP-dissect paper (Oikarinen & Weng, 2022).

We use the output of this similarity function in later sections as a metric of CLIP-dissect’s
”confidence” in its labeling. In particular, we analyze the individual and layer-wide implica-
tions of this metric, and its potential usage to determine whether neurons are interpretable
or not.

2.2.2 Cosine Similarity (CLIP)

Cosine similarity is defined as the cosine of the angle between two vectors and is used to
calculate the distance between two points in the plane. The cosine similarity metric is based
purely on cosine principles, and as distance increases, the similarity of data points decreases.
It’s a value with a constrained range of 0 to 1. The cosine of the angle between the two
non-zero vectors is used to calculate similarity. A cosine similarity is a number between 0
and 1. The closer the value is to 0, the more orthogonal or perpendicular the two vectors are
to one another. When the value is closer to one, the angle is less and the images are more
similar. During the Contrastive Pre-Training phase of CLIP, a batch of 32,768 combinations
of image and text are simultaneously sent through the text and image encoders to create
vector representations of the text and the related image, respectively. The training is carried
out by looking for the closest text representation for every image over the full batch, which
corresponds to maximizing cosine similarity between the actual N pairings that are the most
similar. It also distances the real images from the other texts by minimizing their cosine
similarity. The cosine formula is defined as follows:

cos(θ) =
Ii · Tj

||Ii|| · ||Tj ||

where Ii and Tj are the vector representations (created by their respective encoders) of image
xi and text concept tj .

3 Ground-truth Label Derivation

In order to test all of our neuron labeling methods, we began by manually labeling 3840
intermediate neurons in ResNet-50, found through Layers 1-4 as defined by torchvision
(Paszke et al., 2017) trained on ImageNet (Deng et al., 2009) that were available to us
through the use of CLIP-dissect.

To perform this ground-truth labeling, we used the Broden dataset (Bau et al., 2020) as
Dprobe and the top twenty-thousand words1 in the English language as the Concept Set S,
and used these as parameters for a CLIP-dissect model. A full set of our input parameters
for CLIP-dissect can be found in our Github Repository linked in the abstract.

Below, we outline the complete set of steps we used to derive our ground-truth labels:

1Source: https://github.com/first20hours/google-10000-english/blob/master/20k.txt
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Figure 1: Overview of Ground-Truth Derivation process for all layers of ResNet-50

Figure 2: Example of a neuron where CLIP-dissect accurately describes the top-10 activating
images

1. Generate a CLIP-dissect model of layers 1-4 of ResNet 50, using the Broden dataset
as Dprobe and the top 20000 English words as the concept set S. We use a Vit-B/16
CLIP model.

2. For each neuron in each layer, we have CLIP-dissect output the top-10 highest
activating images, the top-3 labels by Soft-WPMI similarity, and the corresponding
value.

3. If we find the majority of activating images sufficiently match a CLIP-dissect label,
we wrote that label to be a ground truth.

4. Otherwise, if the majority of images matched a description not provided by CLIP-
dissect, we would write that description in as long as it was contained in the top
20000 English words.

5. Finally, if there was no common pattern among the majority of images, we would
simply label the neuron as non-interpretable. The number of these neurons may be
found in Table 1.

You can find a simplified illustration of this derivation in Figure 1.

The results and code used for this derivation can be found in the Github Repository in the
abstract.

An example for each scenario from layer 4 as described in the steps above is shown:

1. Figure 2 illustrates an example where CLIP-dissect is accurate

2. Figure 3 illustrates an example where CLIP-dissect is wrong, but a different concept
is correct.

3. Figure 4 illustrates a neuron with no derivable concept.

4 Computing Neuron Labels

4.1 SAM-label

The Segmentation Anything Model (SAM) (Kirillov et al., 2023) alongside Meta AI’s
Grounding Self-Distillation with No Labels (DINO) (Liu et al., 2023), facilitates unsupervised
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Figure 3: Example of a neuron where CLIP-dissect does not accurately describe the top-10
activating images. In this image, it is most likely detecting the concept stripes.

Figure 4: Example of a neuron where CLIP-dissect is incorrect and no concept can be derived

object identification and segmentation. By extracting the top 10 highly activated images
from the ResNet-50 intermediate layer neurons, Grounding DINO identifies objects within
these images based on a series of class concepts provided. The model then incorporates this
information into the segmentation process, accurately segmenting the objects and assigning
corresponding labels based on Grounding DINO’s predictions. Although this approach is
highly efficient with common concepts, after thorough experimentation, we determined that
Grounding DINO’s computational complexity provides non-interpretable labeling data for
large class lists.

We have provided a brief overview of our pipeline for SAM and Grounding DINO pipeline in
Figure 5.

4.2 Broden-label

The Broden (Broadly and Densely Labeled) dataset is the primary dataset we have been
using for Dprobe. It was assembled for the purposes of training and validating the Net-Dissect
model Bau et al. (2020).

We use this model not only as Dprobe for most of our experiments, but we also use it to extract
potential neuron labels. In order to do so, we first derived the top-10 highest activating
images from ResNet-50 intermediate layer neurons. Since all of these images naturally come
from the Broden dataset, as it is our Dprobe, we then extract the file paths and corresponding
densely and broadly annotated labels for each highly activating image. When this is complete,
we compile the labels of all ten images into one full dataset and normalize the results.

There were a few issues with this approach. One that was difficult to resolve is that the
concept set of the Broden dataset does not match the concept set of our ground-truth
labeling, which consisted of words from the top 20000 most common words in the English
language, while the Broden dataset uses 1197 specified labels.

Figure 5: Overview of SAM/Grounding-DINO process for all layers of ResNet-50
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Figure 6: Overview of CLIP process for all layers of ResNet-50

Further, the Broden dataset consists of both broad (per-image) and dense (per-pixel) labels,
each of which has different properties. Therefore, while it is possible to calculate the average
within each of the different categories, it is difficult to measure the impact of each label.

Indeed, while we did extract the top 3 labels for all 3840 intermediate neurons, it was
not possible to fairly compare our results quantitatively from this extraction to either our
ground-truth labeling or CLIP-dissect output. Thus, we mostly use Broden for a qualitative
analysis of our results.

4.3 CLIP-avg-label

In order to derive its labels, CLIP-dissect uses a CLIP model to create a concept-activation
matrix. From this concept-activation matrix, it then calculates the cosine similarity between
the activation vector and concepts (note this is different from the Soft-WPMI similarity used
in CLIP-dissect). For our setup, we decided to try a simpler method.

Essentially, we took the top-k activating images (which are separate from CLIP, as shown in
section 2.1) and ran CLIP on each of them to get the specific top-10 labels it would provide.
Then, similar to what we did for the Broden set, we would add the cosine similarities for each
particular label together to come up with a compilation result of added cosine similarities.

We used a more powerful CLIP model (ViT-B/32). We will call our method CLIP-avg.

As you will see in Section 5.2, we noted that CLIP-avg did not match our ground-truth
results as well as CLIP-dissect. This suggests that the CLIP-dissect Soft-WPMI similarity
function is more accurate than our method for deriving labels.

A brief overview of our process for labeling neurons using CLIP can be found in Figure 6.

5 Results

In this section, we provide both qualitative and quantitative results of our experimentation
with CLIP-dissect, CLIP-avg, Broden, and SAM/Grounding-DINO.

In Section 5.1 we will introduce observed results from all three methods described in Section
4, and their specific successes and failures. We find that SAM and Broden provide either
incorrect or non-useful labels for our purposes, while CLIP and CLIP-dissect provide relatable
information that we use in quantitative analysis.

In Section 5.2 we will be discussing the accuracy of the CLIP-dissect model, and the
CLIP neuron label computation described in Section 4.3. In that section, we find that for
interpretable neurons specifically, CLIP-dissect is relatively accurate.

In Section 5.3, we will discuss the interpretability of neurons and results derived from ground-
truth labeling, CLIP-dissect, and our CLIP method. Each of these methods paints a different
picture of how interpretable neurons are, which we will be discussing the implications of.
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Table 1: Quantitative Accuracy

Type Layer 1 Layer 2 Layer 3 Layer 4

CLIP-dissect top-1 correct (neurons) 131 225 430 1050
CLIP-dissect top-3 correct (neurons) 151 269 495 1483
CLIP-dissect top-5 correct (neurons) 156 277 516 1509
CLIP-dissect incorrect (neurons) 66 173 271 180

CLIP-avg top-1 correct (neurons) 30 57 140 259
CLIP-avg top-3 correct (neurons) 113 183 290 500
CLIP-avg top-5 correct (neurons) 142 234 359 653
CLIP-avg incorrect (neurons) 80 216 428 1036

Non-interpretable (neurons) 34 62 237 359
Total (neurons) 256 512 1024 2048

CLIP-dissect top-5 accuracy/interpretable (%) 70.27% 61.56% 65.57% 90.34%
CLIP-avg top-5 accuracy/interpretable (%) 63.96% 52.00% 45.62% 38.66%

5.1 Qualitative Analysis

In general, we noted that the quality of SAM labels was not useful. When we presented
the 20k dataset to SAM, we noticed it was unable to come up with any meaningful labels.
We further reduced this amount of classes to 3k, then the number of classes that existed
within our ground-truth labeling, neither of which improved performance. Therefore, we
were unable to use SAM labeling to derive results.

Further, we observed an inability to directly compare CLIP-dissect results with Broden
labels. As mentioned in Section 4.2, Broden labels come from a different set than our concept
set S. Further study can be conducted on the results when these Broden labels are set to be
S.

Our best comparison to our CLIP-dissect result came from our CLIP-avg model. These two
methods are quantitatively compared in Section 5.2, however, we also noted that our CLIP
result often did not match our CLIP-dissect result as it trended towards higher-level concepts.
For lower-level concepts, CLIP-avg would often provide similar concepts as CLIP-dissect.
This result is proven quantitatively as shown in Table 1.

5.2 Quantitative Accuracy

In order to determine the quantitative accuracy of CLIP-dissect and our CLIP-avg model,
we first came up with ground-truth labels as described in Section 3. Unfortunately, in this
scenario, it is not possible to avoid human evaluation, and thus it was used. Then, we ran
CLIP-dissect using Soft-WPMI similarity sim(tm, qk;P ), using Broden as Dprobe, and the
top 20000 English words as concept set S and compared the top-1, 3, and 5 labels based on
sim(tm, qk;P ) to our ground-truth.

Since a large portion of our ground-truth labels came from the top-3 labels provided by
CLIP-dissect, it should be noted that there is a very small increase between top-3 and
top-5 accuracy (that is, the correctness of at least one of the top-3 labels vs. top-5 labels),
while there is a larger gap between top-1 and top-3. It, therefore, can be suggested that
CLIP-dissect either very accurately matches concepts, or completely misses the common
concept in the images.

Unlike analysis for the fully connected layer, where each neuron corresponds to a specific
subject, there is no specific ”ground truth” for every neuron in the intermediate neuron.

Therefore, we used CLIP-dissect labels to motivate our ground-truth labeling since we believe
that if CLIP-dissect accurately describes the set of top-10 highly activating images, it is
reasonable to say that its label matches a perceived ground-truth. Full results are displayed
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Table 2: Soft-WPMI Similarity vs. Correctness

max sim(tm, qk;P ) Average

Correctness Layer 1 Layer 2 Layer 3 Layer 4

Top-1 correct (avg) 0.2119 0.1992 0.2572 0.2969
Top-3 correct (avg) 0.2161 0.2014 0.2623 0.2965
Top-5 correct (avg) 0.2092 0.1956 0.2516 0.2914
Incorrect or non-interpretable (avg) 0.1411 0.1397 0.1656 0.1914

Total Average 0.1826 0.1700 0.2089 0.2651

in Table 1, where top-5 accuracy/interpretable is defined as the percentage of neurons that
are ground-truth labeled as interpretable where CLIP-dissect is able to acquire the correct
label in at least one of the top 5 labels as defined by sim(tm, qk;P ).

Interestingly, we note our CLIP-avg model has a comparable result to CLIP-dissect for Layers
1 and 2, but falls off towards Layers 3 and 4. Noticeably, while CLIP-dissect experiences a
noticeable spike in accuracy on Layer 4, CLIP-avg’s performance suffers in comparison. We
believe this to be a result of CLIP-avg’s inability to notice a pattern of specific high-level
concepts since each image is labeled separately in our method while the activations our
combined in CLIP-dissect.

In Table 1, we observed that CLIP-dissect has a top-5 accuracy averaging around 65% for
layers 1-3, with the accuracy spiking for layer 4. This suggests that CLIP-dissect is best
able to recognize higher-level concepts that activate more often in layer 4 (i.e. dogs and
kitchens) better than the lower-level concepts that activate in the first few layers (i.e. stripes
and checkers). This corresponds to a similar spike in average similarity sim(tm, qk;P ) as
described in section 5.3.

5.3 Interpretability

One important facet of our study is the analysis of the human interpretability of these
intermediate-layer neurons. As mentioned in Section 3, we labeled neurons we could not
derive a pattern for as non-interpretable. We wanted to see if the Soft-WPMI similarity
(sim(tm, qk;P )) we acquire from CLIP-dissect labels correlated to its accuracy. To do this,
we took the average of the Soft-WPMI similarities of all neurons in each layer, and further
took the average of the Soft-WPMI similarities for neurons that were predicted correctly,
with top-3 accuracy, top-5 accuracy, and those that were either incorrectly predicted or were
not interpretable. The results of this experiment can be found in Table 2.

We can note that the neurons that CLIP-dissect predicts correctly have a higher similarity
average than those that it predicts incorrectly as well as the total average. Thus, we can
conclude that the CLIP-dissect sim(tm, qk;P ) metric is an effective tool for measuring the
potential accuracy of a particular neuron label. We also note a spike in average similarity
for Layer 4 compared to the other 3 layers, which corresponds to our result in Section 5.2.

In order to better gauge the spread of the interpretability of the various neurons using the
Soft-WPMI similarities, we create Table 3 and Figures 8, 9, 10, and 11 to illustrate the
relative interpretability of a layer as a whole.

From these results, we note that similarities are skewed right, suggesting the majority of
neurons have low interpretability; indeed, this matches our observations during ground-truth
labeling. While many neurons indeed had a specific concept in the majority of highly
activating images, it should be noted there was no distinction made as to how many images
had a particular concept. In several ground-truth labels, there were seemingly random images
that did not match the overall pattern, as seen in Figure 7.
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Table 3: Interpretability as Result of Soft-WPMI Similarity

Interpretability Layer 1 Layer 2 Layer 3 Layer 4

High Interpretability (0.3-0.99 similarity)(Neurons) 32 38 157 628
Medium Interpretability (0.2-0.3 similarity)(Neurons) 44 100 320 728
Low Interpretability (0.1-0.2 similarity)(Neurons) 143 308 481 652
Non-interpretable (0-0.1 similarity)(Neurons) 37 66 66 40

Total 256 512 1024 2048

Figure 7: Displays neuron 1902 of layer 4. The broad concept is a terrier, but there are
random images (i.e. spiral and drink) sprinkled in.

Figure 8: Comparison of Soft-WPMI Similarity and Neuron Counts from Layer 1.

Figure 9: Comparison of Soft-WPMI Similarity and Neuron Counts from Layer 2.
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Figure 10: Comparison of Soft-WPMI Similarity and Neuron Counts from Layer 3.

Figure 11: Comparison of Soft-WPMI Similarity and Neuron Counts from Layer 4.

6 Visualizations

6.1 Overall Concepts per Layer

Based on our quantitative analysis, we determined that CLIP-dissect activates most highly
on neurons associated with abstract concepts. By comparing the top 26 neuron concepts
and reference frequency, as shown in Figures 12, 13, 14, and 15 for ResNet-50’s intermediate
layers, CLIP-dissect activated most highly on ”stripes”, ”dotted”, ”spiral”, ”lattice” and
”grid”.

We note through this analysis that while layers 1 through 3 as defined by torchvision are
stacked heavily toward certain concepts, layer 4 is more spread out between concepts. Again,
this can be attributed to the progressive increase in concept complexity as images pass
through the different layers. For example, layer 4 neurons activate on animals (i.e. dogs)
and more complex forms such as certain types of rooms and objects, while the other three
layers have most of their activations on more abstract concepts such as stripes and checkers.

This therefore provides us with a broad overview of how these models work; earlier neurons
are able to identify basic concepts (i.e. stripes, colors, certain patterns), while later layers
combine this information to identify more complex concepts.
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Figure 12: Displays a specific neuron concept and its class frequency within layer 1.

Figure 13: Displays a specific neuron concept and its class frequency within layer 2.

Figure 14: Displays a specific neuron concept and its class frequency within layer 3.
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Figure 15: Displays a specific neuron concept and its class frequency within layer 4.

Figure 16: Example, searching for concept ”stripes” in layer 4 of ResNet-50

6.2 Searching for Specific Concepts

Utilizing CLIP-dissect’s ground-truth neuron analysis, we developed a function able to
effectively search for specific concepts within the top 10 most highly activating labels and
top 20 most highly activated images obtained from the ResNet-50 intermediate layer neurons.
An example of this is shown in Figure 16. Similarly, we developed a layer and index search
function for the CLIP-dissect analysis. This function allows us to determine the concept
assigned by CLIP-dissect to each neuron and measure its similarity with other neurons that
may relate to a similar concept. Through these search functions, we are able to measure
the similarity between different neurons based on the model’s interpretation of specific
labels, allowing us to gain a deeper understanding of how the model perceives and represents
different visual concepts.

Specifically, we are able to visualize both which layers and in which neurons concepts may
appear, and how often concepts appear. This index allows users to more greatly appreciate
the complexity of convolutional networks such as ResNet-50, and provides a foundation for
which more complex visualizations can be built.

One important idea is that this visualization can easily be created for other convolutional
neural networks as well. While in this work we only focus on ResNet-50, this analysis can
also be conducted on other ResNet models, as well as visual transformers.

One such visualization that can be presented is determining how neurons activate each other.
This is one limit to CLIP-dissect; while we can see the function of each individual neuron,
we are unable to see the connections between the different neurons and layers. However,
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Figure 17: Homepage of the Interactive Site

Figure 18: Searching for the concept ”dog”

since an activation map is provided by CLIP-dissect, it may be possible to integrate this to
identify more complex relationships between neurons.

6.3 Interactive Website

To allow anyone to visualize the selected neurons of the ResNet model with CLIP-dissect labels,
we have created an interactive website which you can find at https://dr4nx.github.io/clip-
search/index.html.

Through the site, users can interact with select layers of the ResNet-50 network. They can
both search for specific neurons as shown in 19 or search the network for a specific topic
within the network as shown in 18. This allows users to seamlessly navigate through the
network and quickly flip through neurons as desired.

For neuron-specific searches, users can also see the top activating images CLIP-dissect output
is based on, as well as the top 10 labels by similarity that are outputted by CLIP-dissect.
This is useful as sometimes the label with the highest similarity is not necessarily the most
accurate to the images. Users can also see the actual similarity value; this is helpful as we
have shown in 5.3 that the similarity function provides a reasonable indication of whether a
neuron is human interpretable.

Within the website, there are also hyperlinks to help users find neurons that have similar
concepts to each other, as well as specific neurons that might match a specific target label.
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Figure 19: Information for Neuron 1802 of Layer 4

7 Conclusion

In this summer project, we have constructed an analysis of the intermediate neurons of layers
of ResNet-50 using CLIP-dissect. We have validated the accuracy and ability of CLIP-dissect
for labeling intermediate neurons, and following this validation, we have successfully used
the Soft-WPMI similarity constructed by CLIP-dissect to analyze the different concepts and
interpretability of neurons in intermediate layers.
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